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ABSTRACT
Recent data stream systems such as TelegraphCQ have em-
ployed the well-known property of duality between data
and queries. In these systems, query processing methods
are classified into two dual categories – data-initiative and
query-initiative – depending on whether query processing
is initiated by selecting a data element or a query. Al-
though the duality property has been widely recognized,
previous data stream systems do not fully take advantages of
this property since they use the two dual methods indepen-
dently: data-initiative methods only for continuous queries
and query-initiative methods only for ad-hoc queries. We
contend that continuous query processing can be better op-
timized by adopting an approach that integrates the two
dual methods. Our primary contribution is based on the
observation that spatial join is a powerful tool for achiev-
ing this objective. In this paper, we first present a new
viewpoint of transforming the continuous query processing
problem to a multi-dimensional spatial join problem. We
then present a continuous query processing algorithm based
on spatial join, which we name Spatial Join CQ. This algo-
rithm processes continuous queries by finding the pairs of
overlapping regions from a set of data elements and a set
of queries, both defined as regions in the multi-dimensional
space. The algorithm achieves the advantages of the two
dual methods simultaneously. Experimental results show
that the proposed algorithm outperforms earlier algorithms
by up to 36 times for simple selection continuous queries and
by up to 7 times for sliding window join queries.

1. INTRODUCTION
A data stream is a sequence of data elements that arrive
orderly[1, 9, 16]. Examples of data streams include sensor
data or network packet data. The primary characteristics
of data streams are that they arrive continuously, rapidly,
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unboundedly, and in real-time[9, 16]. Due to these char-
acteristics, it is not possible to control the order in which
elements arrive nor to store the entire data elements[16].
Hence, queries over data streams are not one-time queries,
which are executed only once against stored data. Instead,
queries over data streams are continuous queries that are
registered in advance and run repeatedly over a period of
time[16, 20].

There has been a lot of research effort on efficiently man-
aging stream data and processing continuous queries; many
data stream systems such as NiagaraCQ[6], TelegraphCQ[5],
Aurora[24] and STREAM[1] have been developed. Espe-
cially, PSoup[4], the query processor of TelegraphCQ, has
employed the well-known property of duality between data
and queries to process ah-hoc queries and continuous queries.
Ad-hoc queries are processed by finding a set of data ele-
ments that satisfy the condition of a query (Figure 1(a)).
In contrast, continuous queries are processed by finding a
set of continuous queries whose condition is satisfied by a
data element (Figure 1(b)). We call these two dual methods
query-initiative and data-initiative, respectively.

Data Set

Data Index

Query Set

Query Index

Find all data elements that
satisfy the condition of a query

Find all queries whose condition
is satisfied by a data element

a query a data element

(a) Query-initiative method. (b) Data-initiative method.

Figure 1: Two dual methods for query processing.

Although the duality property has been widely recognized,
previous data stream systems do not fully take advantages of
this property since they use the two dual methods indepen-
dently: data-initiative methods only for continuous queries
and query-initiative methods only for ad-hoc queries. Thus,
when processing continuous queries, the performance gain
that could be obtained by query-initiative methods has been
overlooked.

We contend that continuous query processing can be better
optimized by adopting an approach that integrates these two
dual methods. As shown in Figure 2, our method finds all
pairs of a query and a data element where the data element
satisfies the condition of the query. That is, our method al-
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lows us to process multiple continuous queries against mul-
tiple data elements. Compared with data-initiative meth-
ods, our method has more opportunities for optimization on
the data set as well. In particular, it can share query ex-
ecutions against individual data elements, significantly im-
proving the overall performance of query processing against
multiple data elements. Thus, the advantages of our method
become more prominent when a large number of data ele-
ments have to be handled due to a high input rate.

Data Set Query Set

Data Index Query Index

Find all pairs where the data element 
satisfies the condition of the query

Figure 2: Our method that integrates the two dual
methods.

Our major contribution is based on the observation that
spatial join is a powerful tool for combining the two dual
methods. Spatial join is a spatial database operation that
finds all pairs of objects satisfying a given spatial relation-
ship(i.e., overlap as in this paper)[3]. We find out and exploit
the similarities between our method and spatial join.

We first present a new viewpoint of transforming the contin-
uous query processing problem to a multi-dimensional spa-
tial join problem. For the transformation, we present a for-
malization of duality between data and queries, which we
call the duality model. The duality model represents both a
data element and a query as regions in the multi-dimensional
space and defines query processing as a process of finding the
pairs of overlapping regions from a set of data elements and
a set of queries.

We then propose the continuous query processing algorithm
based on spatial join, which we call Spatial Join CQ. The al-
gorithm achieves the effects of both of the two dual methods
by using spatial join, which is a symmetric operation. To
show progressive development of the algorithm, we first de-
velop the algorithm for simple selection continuous queries,
and then, extend it to accommodate sliding window join
continuous queries. We demonstrate excellence of the al-
gorithm by extensive experiments. As stated earlier, our
algorithm becomes more effective – especially for batch pro-
cessing, where we can take advantage of optimization on the
data set as well.

The rest of this paper is organized as follows. Section 2 in-
troduces the forms of data streams and continuous queries
that are dealt with in the paper. Section 3 reviews prior
work on continuous query processing methods. Section 4
formalizes the duality model. Section 5 presents the con-
tinuous query processing algorithm based on spatial join.
Section 6 extends the algorithm so as to accommodate slid-
ing window join continuous queries. Section 7 summarizes
the results of performance evaluation. Section 8 concludes
the paper.

2. PRELIMINARIES
In this section, we discuss the forms of data streams, contin-
uous queries, and the continuous query processing methods
that we handle in the paper.

The Form of Data Streams

Most of existing data stream systems such as TelegraphCQ[5],
Aurora[24], and STREAM[1] handle the relational tuples
having a fixed schema for each data stream source. We han-
dle the same form of input data streams.

For simplicity of explanation, we assume that the domain of
all the attributes is a real number between 0 and 1. Here,
0 and 1 mean the minimum and maximum values of the
domain, respectively. We make this assumption without loss
of generality because any value can be transformed to a real
number using a hash function. For example, in the case of
a string value, the order-preserving hash functions proposed
by Fox et al.[8] can be exploited.

A data element in a data stream has a timestamp, meaning
the time when it arrived, in addition to attributes. It can
be used to identify the order of data elements and to expire
old data elements.

The Form of Continuous Queries

Most of existing data stream systems[1, 6, 24] handle Select-
Project-Join (SPJ) queries against relational tuples.1 We
handle the same form of continuous queries, which is shown
in Equation (1).

Π projection attributes (σ selection predicate(D)) (1)

Here, D stands for the set of data stream sources. The
selection predicate represents the condition of a query. The
condition is represented as a disjunction of conjunctions, i.e.,
in the Disjunctive Normal Form(DNF). We note that any
query condition can be translated to a DNF. For a single
data stream source, this condition consists of a boolean ex-
pression of simple predicates involving the operators >, ≥
, =, <, and ≤. For multiple data stream sources, this con-
dition contains a join condition including an equi-join or a
theta-join. The projection attributes represents the list of
the attributes returned as the query result.

For continuous queries, the concept of the sliding window [1,
9, 16] has been presented to restrict the range of data el-
ements to be processed. This concept becomes necessary
due to unboundedness of data streams. The sliding win-
dow is categorized into the time-based sliding window and
the count-based sliding window. The former consists of the
data elements that arrived within the given w time unit.
The latter consists of the w data elements that most re-
cently arrived.

Strategies for Continuous Query Processing

There are two strategies for continuous query processing:
immediate processing and batch processing. The former pro-
cesses continuous queries immediately after a data element
arrives. The latter keeps data elements for some duration
and processes continuous queries against the data elements
kept. We support both strategies in this paper.

1In data streams, aggregation functions are usually pro-
cessed by finding approximate results because of unbound-
edness of the input data[1, 9]. It can be done in a post-
processing step after the SPJ queries are processed, and we
will leave this issue as a further study.
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Immediate processing is hard to use in an environment where
data elements are arriving at a very fast rate. In contrast,
batch processing is adequate for such an environment since
it can improve the performance by sharing query executions
against individual data elements. We note that sliding win-
dow join can take advantages of batch processing since it is
processed against sets of data elements contained in sliding
windows. Batch processing, however, is not suitable for real-
time monitoring because of the delay in query processing.

3. RELATED WORK
To process continuous queries, existing data stream sys-
tems such as NiagaraCQ[6], TelegraphCQ[5], Aurora[24],
and STREAM[1] adopt the data-initiative approach. That
is, these systems find continuous queries whose conditions
are satisfied by the data element that newly arrives. Hence,
in these systems, optimization is allowed only for the query
set, but not for the data set. Accordingly, the differences
between TelegraphCQ and our method become remarkable
when we process continuous queries over a large number of
data elements.

Golab et al.[9] classifies optimization techniques employed
in existing systems into query plan sharing[5, 6] and query
predicate indexing[6].

Query plan sharing identifies the common operations among
continuous queries registered and executes these common
operations only once. Hence, repeated execution can be
avoided. This method is mainly used to share join, which
is a very costly operation. Figure 3(a) shows an example of
query plan sharing between the queries Q1 and Q2. Since
the queries Q1 and Q2 have a common join operation R.x
= S.y, they can share it to speed up continuous query pro-
cessing.

Q1 : Select * from R, S Where R.x = S.x and 11 < R.y <15

R(x, y)  S(x, z)  

R.x = S.xR.x = S.x

4 < R.y <= 11

Q2

11 < R.y < 15

Q1

Q2 : Select * from R, S Where R.x = S.x and 4 < R.y <= 11

4

11

15

<=
<
=

>=
>

Q2

Q1

<=
<
=

>=
>

Q2

Q1
<=
<
=

>=
> Q2

<=
<
=

>=
> Q2

<=
<
=

>=
>

Q1

<=
<
=

>=
>

Q1

(b) Query predicate indexing 
on the attribute R.y.

(a) Query plan sharing 
between the queries Q1 and Q2.

Figure 3: Query optimization techniques for the
data-initiative method.

Query predicate indexing[6] allows us to efficiently find con-
tinuous queries whose conditions are satisfied by a given
data element. This can be done by indexing the ranges of
an attribute value that makes a query predicate true. Ni-
agaraCQ[6] and TelegraphCQ[5] use a predicate index that
is similar to the IBS tree[10] for this purpose. The IBS tree
is a balanced binary search tree, which is created for each
attribute. Its node stores a constant value appearing in the
predicates as well as the identifiers of the predicates having
that constant value. These identifers are categorized by the
operators (i.e., >, ≥, =, <, and ≤) used in the predi-

cates. Figure 3(b) shows an example of predicate indexing
on the attribute R.y of the queries Q1 and Q2. To find the
predicates that become true, we traverse the IBS tree using
the attribute value of a given data element. Suppose a data
element whose value for the attribute R.y is 14. In the node
11, the query Q1 is selected because 14 is grater than 11.
In the node 15, the query Q1 is selected because 14 is less
than 15. Since Q1 is selected in every node that stores it,
Q1’s condition on R.y becomes true for R.y = 14.

This method has a weakness of having to retrieve the result
for each IBS tree and merge those results since an IBS tree
is created for each attribute. Besides, it cannot index the
predicates, such as join, that involve multiple attributes.

On the other hand, a method similar to Spatial Join CQ has
been independently developed in another area. SINA [15],
proposed in the area of spatial databases, has some similari-
ties to our method, i.e., it uses spatial join to process contin-
uous queries over moving objects. Our distinct contribution
is proposing transformation of continuous query processing,
which is not originally a spatial database operation, into
spatial join. Furthermore, SINA deals primarily with sim-
ple range predicates, but does not deal with complex queries
typically found in recent data stream systems, e.g., conjunc-
tion(or disjunction) of predicates and join involving multiple
data stream sources. Spatial Join CQ handles these complex
queries easily.

4. THE DUALITY MODEL
In this section, we present a formalization of duality between
data and queries, which we call the duality model. Section
4.1 presents the definition of a data element and a query
in the duality model; Section 4.2 query processing in this
model.

4.1 The Definition of a Data Element and a
Query

We define a data element and a query symmetrically. Defi-
nitions 1 and 2 define a data element and a query as a point
and a region in the multi-dimensional space, respectively.
Hereafter, since a point is a special form of a region, we call
a point as a region unless there is confusion.

Definition 1. (A Data Element in the Duality Model)
Suppose that a data element d = (v1, v2, ..., vn) has n at-
tributes, and the domain of attri is Domi (0 ≤ i ≤ n).
A data element d is a point (v1, v2, ..., vn) in the domain
space Dom1 ×Dom2 × ... ×Domn. That is, a data element
d is a point in the n-dimensional space where an attribute
becomes an axis with the coordinate value of the axis being
the value of the attribute. � denotes a set of data elements.
�

Definition 2. (A Query in the Duality Model) Sup-
pose that the condition of a query q is ϕq(attr1, attr2, ..., attrn

), and the domain of attri is Domi (0 ≤ i ≤ n). A query
q is the region {(v1, v2, ..., vn) | ϕq(v1, v2, ..., vn), v1 ∈
Domi, ..., vn ∈ Domn} in the domain space Dom1×Dom2×
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... × Domn.2 That is, a query is a region where the points
located in the region satisfy the condition of the query. �

denotes a set of queries. �

Example 1. Figure 4 shows an example of data elements
and queries in the duality model. The data elements d1, d2,
and d3, which are tuples of the relation R(x,y), are repre-
sented as the points in the two-dimensional space consisting
of x and y axes as shown in Figure 4(a). For instance, d1

is the point whose value of x is 4 and value of y is 3. The
queries q1 and q2 over the relation R(x,y) are represented as
the regions in the two-dimensional space as shown in Figure
4(b). For instance, q1 is the region whose interval of x is
[1,6] and that of y is [4,6]. �

d1 = (4,3), d2 = (1,2), d3 = (2,5)

Data in R(x,y) :
q1 =  (1≤R.x≤6) and (4≤R.y≤6)
q2 =  (0≤R.x≤3) and (0≤R.y≤3)

Queries :

R.y

R.x
1 2 3 4 5 6

1

2

3

4

5

6

d1(4,3)
d2(1,2)

d3(2,,5)

0

R.y

R.x
1 2 3 4 5 6

1

2

3

4

5

6
q1

[1,6] x [4,6]

q2

[0,3] x [0,3]

0

(a) Data elements in the multi-
dimensional space

(b) Queries in the multi-
dimensional space

Figure 4: An example of data elements and queries
in the duality model.

4.2 Definition of Query Processing
In the duality model, query processing is defined as the pro-
cess of finding the pairs from a set of data elements and a
set of queries that overlap in the multi-dimensional space.
Lemma 1 shows the correctness.

Lemma 1. Given a set � of data elements and a set � of
queries, a data element d ∈ � satisfies the condition of a
query q ∈ � if and only if d overlaps with q in the multi-
dimensional space.

Proof: By Definitions 1 and 2, the data element d and the
query q are defined as the point (v′

1, v′
2, ..., v′

n) and the
region {(v1, v2, ..., vn) | ϕq(v1, v2, ..., vn) = true}, respec-
tively. If the point and the region overlap, it means that
ϕq(v

′
1, v′

2, ..., v′
n) becomes true according to Definition 2.

Thus, the data element d satisfies the condition of the query
q. �

Example 2. In Figure 4, the data element d2 overlaps with
the query q2. We note that the value (1,2) of d2 satisfies the
condition (0 ≤ R.x ≤ 3) and (0 ≤ R.y ≤ 3) of q2. Simi-
larly, d3 overlaps with q1 satisfying the condition of q1. In
contrast, d1 does not satisfy the condition of any queries
because there is no query that overlaps with d1. �

2Given a query condition C1 ∨ C2 ∨ · · · ∨ Cn where Ci is a
conjunction of predicates, each Ci is represented as a region.
Thus, a query condition may be represented as a collection
of multiple regions. For ease of exposition, we consider only
the query condition having one Ci. We can easily extend
this simple strategy so as to handle multiple Ci’s by ORing
the results of individual Ci’s.

5. A CONTINUOUS QUERY PROCESSING
ALGORITHM BASED ON SPATIAL JOIN

In this section, we propose our continuous query processing
algorithm Spatial Join CQ. To show progressive develop-
ment of the algorithm, we first develop the algorithm for
simple selection continuous queries, and then, extend it to
accommodate sliding window join continuous queries in Sec-
tion 6.

5.1 Characteristics
Our algorithm integrates two dual methods – data-initiative
and query-initiative – into one algorithm. Thus, it allows
us to find multiple queries that overlap with multiple data
elements simultaneously. To achieve this, our algorithm
first accumulates data elements arriving from data stream
sources into a data set, and then, processes continuous queries
with the data set in batch mode. Our algorithm performs
immediate continuous query processing as a special case of
batch processing where there exists only one data element
in the data set. For batch processing, our algorithm first
constructs MBR’s(Minimum Bounding Rectangle) contain-
ing multiple adjacent data elements from the data set, and
then, performs spatial join, which is a symmetric operation,
between a set of MBR’s and a set of queries. Hereafter, we
will refer to this MBR as the data cluster. (In immediate
processing, a newly arriving data element itself becomes a
data cluster.) The data cluster allows us to prevent queries
that overlap with multiple data elements from being repeat-
edly accessed because adjacent data elements tend to share
a large portion of overlapping queries.

The continuous query processing algorithm consists of three
steps as in Figure 5: index building, multi-dimensional spa-
tial join, and refinement.

In the first step, we build indexes over the set of data ele-
ments and the set of queries. The data index stores points,
which represent input data elements, in a simple one-dimen-
sional index. The query index stores regions, which repre-
sent continuous queries, in a multi-dimensional index. Here,
if the shape of the region representing a query is complex(i.e.
is not a simple hyper-rectangle), the query index stores the
MBR for the region instead. In Sections 5.3 and 5.4, we
explain the details of the data and query indexes.

In the second step, we find candidate result pairs by per-
forming multi-dimensional spatial join with the data and
query indexes. We adopt the transform-based spatial join
algorithm proposed by Song et al.[19]. Because the query
index stores MBR’s of queries, the results of the spatial join
step could include false positives. In Section 5.5, we explain
the details of the spatial join step.

In the third step, we find the final result pairs by testing
whether the data element in a candidate result pair indeed
makes the the conditions of the query in the pair true.

5.2 The Transform-Based Spatial Join Algo-
rithm

In this section, we briefly introduce the transform-based spa-
tial join algorithm adopted in this paper. The algorithm
transforms spatial objects with extents into points without
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Query Result
Refinement

Querym

Domain Space

Domain Space

Result

Step1 :

Index Building

Step3 :

Refinement

Step2 :
Multi-Dimensional

Spatial Join

Query Index

Data Index

DataStream
Sourcen

Figure 5: The three steps of the continuous query processing algorithm based on spatial join.

extents using corner transformation[18], and then, performs
spatial join. It shows performance comparable to or bet-
ter than those of other original-space spatial join algorithms
proposed in the reference [3, 12].

Corner transformation transforms the MBR of a spatial ob-
ject in the n-dimensional original space into a point in the
2n-dimensional transform space. In corner transformation,
the coordinates of a point in the 2n-dimensional space are
determined by the minimum and maximum values of the
MBR on each of the n axes in the original space[11, 18].
For example, a one-dimensional object whose minimum and
maximum values on the x-axis are lx and rx, respectively,
is transformed into the point (lx,rx) in the two-dimensional
transform space.

A query that finds spatial objects overlapping with a given
region object in the original space is transformed into a
query that finds point objects contained in a certain region
in the transform space[18, 19]. Figure 6 shows relationships
between a point and regions in the transform space. Here,
objects overlapping with the region r in the original space
are transformed into points in the regions A, B, C, or D
in the transform space[18]. Using these characteristics, the
original-space spatial join operation that finds spatial ob-
jects overlapping with the region r can be processed by the
operation that finds points in the union of the transform-
space regions A, B, C, and D, which constitutes the shaded
part in Figure 6.

We use the notion of the spatial join window to process
spatial join and formally define it in Definition 3.

Definition 3. (Spatial Join Window) [19] Let transform
spaces of indexes R and S to be joined be TS(R) and TS(S).
The spatial join window SJW(P) for a rectangular region P
in TS(R) is defined as the minimal region in TS(S) where
all the objects overlapping with the object in P can reside.
�

The method for finding SJW(P) for the region P, which is
the dark shaded region in Figure 7, is as follows.3 To over-
lap with objects in P, a given object must overlap with the
3For simplicity of explanation, we only explain the SJW in
the two-dimensional transform space. The SJW for the 2n-
dimensional transform space is described in detail in Song
et al.[19].

RX

LX
0.0 1.0

1.0

lx rx

lx

rx

lx rx

r

0.0 1.0

X

A
overlap,
enclose

B
overlap

E
disjoint

C
overlap

D
overlap,
contain

F
disjoint

r (lx, rx)

(a) Region r in the 
original space.

(b) Spatial relationships to r
in the transform space.

Figure 6: Transform-space regions having various
spatial relationships with the query region r in the
original space. Here, r̂ is the transformed point of
r[18].

upper-left point of P, i.e., q̂ = (lx, rx), because q̂ is the
largest object that can exist in the region P. The minimal
region that all objects overlapping with q̂ can exist in TS(S)
is [0, rx] × [lx, 1] above the diagonal by Lemma 2. That is,
SJW(P) is the light shaded region in Figure 7. Since no
object can exist under the diagonal, for simplicity, we use
SJW(P) as [0, rx]× [lx, 1] including the striped region from
now on.

RX

LX
0.0 1.0

1.0

q = (lx,rx)

P

SJW(P)

lx rx

lx

rx

Figure 7: Spatial join window(SJW).

Lemma 2. [19] The minimal region, SJW(P), that all ob-
jects overlapping with the original space object q̂ = (lx, rx)
can exist in TS(S) is [0, rx] × [lx, 1] above the diagonal.

Proof: See Song et al.[19]. �

As indicated by Lemma 2, the two SJW’s in TS(S) for two
adjacent regions in TS(R) significantly overlap. An example
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is the SJW’s of two adjacent regions P1 and P2 in Figure
8. We call this property the overlapping property of SJW’s.
Thus, we can speed up spatial join processing with a fewer
number of I/O accesses by consecutively joining two adja-
cent regions Pi and Pj with their SJW’s because objects in
SJW(Pi) must have already been read into the buffer when
joining Pj with SJW(Pj), and vice versa. Here, we assume
that the buffer replacement strategy is LRU.

RX

LX
0.0 1.0

1.0

RX

LX
0.0 1.0

1.0

P1 P2

SJW(P1)

SJW(P2)

(a) Adjacent regions P1 and P2. (b) SJW(P1) and SJW(P2).

Figure 8: Spatial join windows for adjacent regions.

5.3 Building the Data Index
Our algorithm uses the data index to accumulate data el-
ements for batch processing and to read the data elements
in a proximity order. Reading them in a proximity order
allows us to take advantage of the overlapping property of
SJW(P)’s by constructing a data cluster P from adjacent
data elements. The data index is destroyed after the batch
is processed and is rebuilt for the next batch. The data
index is not used in immediate processing.

For the data index, we adopt a one-dimensional index in-
stead of a multi-dimensional index. This simple one-dimensi-
onal index provides sufficient capabilities for the data index,
which is used only for accessing data elements in a proximity
order.

We use a space filling curve[7, 17] to arrange data elements
in a proximity order. The space filling curve is a method of
linearly ordering regions in the multi-dimensional space such
that regions tend to be close to each other if they are prox-
imate in the multi-dimensional space[7, 17]. Representative
ones include the Z-ordering[17] and the Hilbert ordering[7]
shown in Figures 9(a) and (b).4 In this paper, we use the
Hilbert ordering because it changes the value of only one
axis at a time, producing high proximity. We build a binary
search tree to index data elements in the proximity order
determined by the Hilbert ordering.

(a) Z-ordering. (b) Hilbert ordering.

Figure 9: Representative space filling curves.

4These space filling curves can be used in three or higher-
dimensional space by recursively applying the curve to each
dimension[7, 17].

5.4 Building the Query Index
Our algorithm uses the query index for efficient retrieval
of the queries contained in SJW(P) from the query space
for a given region P in the data space. Multi-dimensional
structures such as the R-Tree, Quad Tree, Buddy Tree, and
MLGF[22, 23] can be used as the query index.

Inserting a query into the query index is done as follows.
The query is represented as a region by Definition 2, and
the shape of the region is approximated as an MBR. The
MBR is transformed into a point using corner transforma-
tion, and then, is inserted into the multi-dimensional index.
As stated in the footnote of Definition 2, disjunctive queries
are represented as a collection of multiple regions. In this
case, the procedure described above is applied to individual
regions except that these regions belong to the same query.

Example 3. Figure 10 shows an example of indexing que-
ries represented as regions. The query q has three condi-
tions: two attributes of data, x and y, have a range [0.2,0.5],
and x is greater than y. The query q is represented as a
triangular region Rq . Because such a region cannot be in-
dexed directly, the region is approximated to MBRq. The
MBRq is transformed into a point (0.2, 0.2, 0.5, 0.5) in the
four-dimensional space, which is subsequently inserted into
the multi-dimensional index.

y

x
1

1

0
0

q :  (0.2 < x < 0.5) and 
(0.2 < y < 0.5) and
(x > y)

0.2 0.5

0.2

0.5
MBRq

(0.2, 0.2, 0.5, 0.5)

corner 
transformation

Rq

Figure 10: An example of query indexing.

Our method of building the query index is capable of effi-
ciently handling large regions since we transform a region
with extents into a point with no extents before indexing.
A query becomes a large region in the original space espe-
cially when its condition has an open interval; it includes
an entire domain of an attribute in the original space when
there is no condition on that attribute. These large regions
tend to significantly overlap with one another. If these large
regions are directly indexed in the multi-dimensional index
such as the R-tree, a large portion of the nodes overlap with
each other, thus making the index size bigger and the query
performance worse[10]. In contrast, we do not suffer from
this problem because we index a point in our method.

Even though the performance of multi-dimensional indexes
decreases as the number of dimensions increases (called the
dimensionality curse[21]), this problem is not significant in
our algorithm. The reason is twofold: the query index deals
with only the attributes that appear in a query, but the
number of those attributes is known to be typically one or
two, and rarely more than five[10]. Besides, we can apply
existing methods, such as the Pyramid-technique[2], of min-
imizing the dimensionality curse for exceptional cases (e.g.,
when the number of attributes appearing in a query is more
than ten).
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Algorithm Spatial Join CQ 

Input: A newly arriving data element or a newly registered query 

Output: Data element-query pairs that satisfy conditions 

Algorithm: 

/* Nbatch_data is the number of data elements in a batch */ 

/* Ndc is the number of data elements in a data cluster */ 

/* for immediate processing, Nbatch_data = 1; Ndc = 1 */ 

01:  if a query is newly registered then 

02: Insert the query into the query index (as described in Section 5.4); 

03:  end if 

04:  if a data element newly arrives then 

05:    Insert the data element into the data index (as described in Section 5.3); 

06:    if the number of data elements in the data index is Nbatch_data  then 

07:        repeat by ⎡Nbatch_data / Ndc⎤ times 

08:  Construct a data cluster DC containing Ndc data elements read in  

 in proximity(Hilbert) order using the data index; 

      (For immediate processing, DC consists of only one newly arriving data element) 

09: Retrieve the queries contained in SJW(DC) using the query index; 

10:  Find data element–query pairs, from DC and SJW(DC),  

 that satisfy the overlapping condition (Lemma 1); 

11:             Refine the data element–query pairs by checking whether the data element  

 makes the conditions of the query true; 

12:        end repeat 

13:        Delete all data elements from the data index; 

14:     end if 

15:  end if 

 Figure 11: The continuous query processing algorithm Spatial Join CQ.

5.5 Multi-Dimensional Spatial Join
In the multi-dimensional spatial join step, the algorithm
constructs a region P by reading data elements in a prox-
imity order and retrieves the queries contained in SJW(P).
The former operation exploits the data index; the latter the
query index. Then, the algorithm finds the overlapping pairs
from data elements in P and queries in SJW(P).

The region P corresponds to the data cluster stated before.
The data cluster is an MBR containing a fixed number of
data elements, where data elements are retrieved in a prox-
imity order. The algorithm needs to control the size of the
data cluster to prevent its size from becoming overly large
or small. If the size becomes too large, so does the SJW of
the data cluster, thus making a large portion of the query
index to be accessed. If the size becomes too small, the per-
formance gain that could be obtained by batch processing
is diminished. Hence, the size of the data cluster is an im-
portant parameter for tuning the performance of continuous
query processing. It is difficult to determine the optimal size
of the data cluster by analytical prediction since it varies de-
pending on many parameters such as the numbers or distri-
butions of data elements and queries. Hence, in this paper,
we find the optimal size through experiments in Section 7.2,
leaving the analytical solution as a future study.

Figure 11 shows our algorithm for processing continuous
queries. We call it Spatial Join CQ. In the first step(lines
1∼3) and the second step(lines 4∼5), we create the query in-
dex and the data index as described in Sections 5.4 and 5.3,
respectively. In the third step(lines 6∼14), we perform spa-
tial join to process continuous queries. For batch processing,

we perform spatial join when Nbatch data data elements have
been accumulated; for immediate processing, when one data
element arrives. Spatial join is processed �Nbatch data/Ndc�
times as follows (for immediate processing, Nbatch data = 1
and Ndc = 1). First, Ndc data elements are read in in the
proximity order by using the data index, and a data cluster
is created(lines 6∼8). Second, the queries contained in the
SJW of the data cluster are retrieved by using the query in-
dex(line 9). Third, the overlapping pairs are found from the
data elements and the queries(line 10). After spatial join is
done, the algorithm refines the result pairs and obtains the
final results(line 11). Finally, the algorithm destroys the
data index(line 13). The data index is rebuilt with the next
batch of data elements that newly arrive.

Example 4. Figure 12 shows an example of the continuous
query processing done in the batch mode. In the data space
of Figure 12, we have six data elements consisting of only
one attribute x. Each data cluster is created with three data
elements. In the query space of Figure 12, Data Cluster1 is
joined with the queries q1, q2, and q3, and Data Cluster2
with the queries q3, q4, and q5. �

6. EXTENSION OF SPATIAL JOIN CQ FOR
SLIDING WINDOW JOINS

In this section, we extend the algorithm presented in Sec-
tion 5 so as to accommodate sliding window join continuous
queries.

We first explain sliding window join as done by Kang et
al.[13]. Figure 13 shows sliding window join processing be-
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Figure 12: An example of the data element-query
spatial join using the data cluster.

tween the data streams A and B. Figure 13(a) shows the
join processing steps when the data element d1 newly ar-
rives from the data stream A: (1) checking whether the join
condition is satisfied between the data element d1 and the
data elements contained in the sliding window of the data
stream B(probe); (2) inserting the data element d1 into the
sliding window of the data stream A(insert); and (3) re-
moving the data elements whose timestamps exceeded the
sliding window range from the sliding window of the data
stream A(invalidate). Figure 13(b) shows the join process-
ing steps when the data element d2 newly arrives from the
data stream B. The steps are symmetric with those in Figure
13(a).

Data 
Stream A

Data 
Stream B

d1

① Probe

② Insert ③ Invalidate
Data

Stream A

Data
Stream B d2

① Probe

② Insert ③ Invalidate

Sliding window A

Sliding window B

Sliding window A

Sliding window B

(a) A data element d1 arrives 
from the data stream A.

(b) A data element d2 arrives 
from the data stream B.

Figure 13: Sliding window join.

To adapt our algorithm to sliding window join, we need to
extend the three methods: 1) indexing data elements, 2)
indexing queries, and 3) multi-dimensional spatial join. The
first should be extended so as to maintain only data elements
within the sliding window range, the second to index the join
conditions as well as the sliding window conditions, and the
third to check these conditions.

Extension of the data indexing method

The data index uses a doubly linked list as well as a binary
search tree to maintain data elements that are within the
sliding window range. The data index also stores timestamp
values indicating the arrival time of data elements. When
a data element arrives from a data stream, it is inserted
into the binary search tree, and then, linked at the head of
the doubly linked list. If the timestamp of a data element
exceeds the range of the sliding window, it is eliminated from
the tail of the doubly linked list and from the binary search
tree.

Extension of the query indexing method

When the join condition is equi-join, it is represented as a
diagonal in a two-dimensional plane. In Figure 14(a), the
query q has an euqi-join condition, R.x = S.x, between two

data stream sources R and S. It is represented as a diagonal
between (0, 0) and (1, 1) in the plane of R.x × R.y. If the join
condition is a theta-join instead of an equi-join, the query
is represented as a triangular region either above or below
the diagonal. If the region is approximated as an MBR,
the MBR becomes the entire region in the plane. If such
a badly approximated MBR were used to index a query,
search efficiency of the query index would become worse.
For example, in Figure 14(a), the MBR of the query q is
represented as the entire plane of R.x × S.x.
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0
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Figure 14: An example of indexing join condition.

In order to resolve the problem, we exploit the object de-
composition method[14]. The object decomposition method
divides a query region into an arbitrary number of pieces
and constructs an MBR for each piece. For example, in Fig-
ure 14(b), the query q is split into four pieces through the
axis R.x, and then, each MBR is stored in the query index.
By applying the object decomposition method, we can index
join conditions more accurately.

The query index stores the sliding window range as a range
condition for an axis in the multi-dimensional space. In the
multi-dimensional spatial join step, the axis for the sliding
window range in the query index spatial joins with the axis
of the timestamp in the data index. By using this method,
the query index allows us to store continuous queries having
different sizes of sliding windows together and to process
these continuous queries as a single spatial join.

This way, the query index can store not only selection con-
ditions but also join conditions. This is a very desirable
property in the sense that, when both of selection and join
conditions are specified in a query, we can process them si-
multaneously using one spatial join. In contrast, it has been
pointed out as a problem that the IBS tree is inherently
incapable of indexing join conditions since it is created on
each attribute[10].

Extension of multi-dimensional spatial join

As stated before, sliding window join is processed between
a data element newly arriving from a data stream and the
set of the data elements contained in the sliding window of
the other data stream. Thus, sliding window join can be
regarded as a kind of batch processing. We refer to the pair
of data elements as joinable data pair and formally define it
in Definition 4.

Definition 4. (Joinable Data Pairs) Consider two data
stream sources DSi and DSj . The set of joinable data pairs
��DSi,DSj

when the data element di arrived from DSi is

320



defined as follows. Here, SW(DSj) means a set of data ele-
ments contained in the sliding window of DSj

��DSi,DSj
= {di} × SW(DSj) �

Our sliding window join algorithm proceeds as follows. First,
the algorithm computes ��DSi,DSj

upon arrival of a data el-
ement di from the data stream source DSi. While computing
��DSi,DSj

, data elements in SW(DSj) are retrieved in the
proximity order using the data index. Next, the algorithm
constructs data clusters with a fixed number of joinable data
pairs. Finally, the algorithm finds query results by doing
spatial join between the set of data clusters and the set of
queries as stated in Section 5.5. Overall, the algorithm for
join queries is analogous to the algorithm in Figure 11 ex-
cept that a data cluster is constructed with joinable data
pairs instead of data elements.

The sliding window join algorithm can be used also for multi-
way join queries. For multi-way join queries, we compute
��DS1,...,DSn

and perform spatial join between ��DS1,...,DSn

and the query index. However, |��DS1,...,DSn
| tends to pro-

liferate because of the Cartesian product among DS1, ..., DSn.
Efficient processing of multi-way join is left as the topic of
a future paper.

7. PERFORMANCE EVALUATION
In this section, we present the results of performance eval-
uation. We describe the experimental data and continuous
queries in Section 7.1 and present the results of the experi-
ments in Sections 7.2, 7.3, and 7.4.

7.1 Experimental Data and Queries
We compare the performance of our algorithm with those
of existing algorithms: the predicate indexing method using
the IBS tree and the query plan sharing method. These
methods are commonly used in recent data stream systems
such as TelegraphCQ, NiagaraCQ, and STREAM. Table 1
summarizes the algorithms used in the experiments. We
first compare the performances of processing simple selection
queries, and then, those of processing sliding window join
queries.

Table 1: Algorithms compared in the experiments.

Simple selection query processing

SJ-Batch Spatial Join CQ (batch processing)

SJ-Immediate Spatial Join CQ (immediate processing)

IBS Continuous query processing using the IBS tree

Sliding window join query processing

SJ-Join Spatial Join CQ (extended for join)

IBS-JS Processing first join conditions using the query

plan sharing method, and then, processing simple

selection conditions using the IBS tree

For the experimental results, we measure the elapsed time
for processing a query. The elapsed time is an important
measure in a data stream environment since it determines
the number of input data elements that can be processed in
a unit time. For fair comparison, we include the time for
creating the data index in the elapsed time for the Spatial
Join CQ algorithm.

Experiments are performed using one data stream source
for simple selection queries and two data stream sources
for sliding window join queries. We use synthetic contin-
uous queries consisting of randomly generated conditions
except when we need to use specific queries. A simple selec-
tion query is a conjunction of selection conditions over ran-
domly chosen attributes. A selection condition is expressed
as constant1 op1 attribute op2 constant2. Here, attribute
means the name of an attribute; constant1 and constant2
are values randomly selected from [0, 1]; and op1 and op2 are
binary comparison operators randomly selected from ≤ and
<. Besides, a selection condition forms a left open interval,
right open interval, or closed interval with a uniform proba-
bility. A sliding window join query involves join conditions
– attribute1 op attribute2 – as well as selection conditions.
Here, attribute1 and attribute2 mean join attributes of data
stream sources, and op a binary comparison operator ran-
domly selected from >, ≥, =, <, and ≤. In addition, we
set the sizes of all the sliding windows to be the same. For
data elements, we generate and use synthetic data whose
attribute values are randomly selected from [0, 1].

We use the Multilevel Grid File(MLGF)[22, 23] for the query
index. For fair comparison, our algorithm reads the MLGF
into main-memory in advance because the other algorithms
compared are main-memory based. We use the Hilbert or-
dering to arrange data elements in the proximity order in
the data index.

All the experiments have been conducted on a PC with a
2.5GHz Pentium4 processor and 1GBytes of main memory
running Windows/XP.

We now summarize in Table 2 the notation to be used through-
out Section 7.

Table 2: Summary of notation.

Symbols Definitions

Nquery Number of registered continuous queries

Nattr Number of attributes in a data stream5

Rpred Number of attributes appearing in the predicates

of a query / Nattr

Nbatch data Number of data elements in one batch processed

together by SJ-Batch

Ndc Number of data elements in a data cluster

Sizesw The size of the sliding window

(in the number of data elements)

7.2 Optimal Value Of Ndc

We first find the optimal value of Ndc by experiments. Ndc

is an important parameter for tuning the performance of
SJ-Batch. The optimal size varies depending on Nbatch data,
Nquery , Nattr as well as distributions of data and queries.

We vary Ndc and choose the optimal value of Ndc that makes
the elapsed time minimized. An interesting result is that
the differences in the elapsed time are very small around
the optimal value of Ndc. For example, the elapsed time

5 In our experiments, we assume that all attributes in data
streams can appear in query predicates. Thus, Nattr means
the number of attributes stored in the query index.
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increases only by 10% as Ndc is varied from 200 to 1200
when the optimal value of Ndc is 400. This result indicates
that we do not need to know the exact optimal value of Ndc,
rendering determination of Ndc easy.

Table 3 summarizes the optimal Ndc’s obtained by experi-
ments when Nbatch data is varied from 2,000 to 10,000 and
Nquery is fixed to 10,000. Using these optimal Ndc’s, we
measure the elapsed time per a data element. We use these
optimal Ndc’s also in our subsequent experiments.

Table 3: Summary of the optimal values of Ndc and
the elapsed times (Nquery = 10, 000).

Nbatch_data 2,000 4,000 6,000 8,000 10,000 

Optimal Ndc 100 120 120 160 200 
Nattr = 4 Elapsed time 

/data elements (ms) 0.406 0.391 0.391 0.381 0.375 

Optimal Ndc 200 240 360 400 400 
Nattr = 8 Elapsed time 

/data elements (ms) 0.570 0.526 0.518 0.510 0.506 

 

From Table 3, we note that the optimal Ndc gradually in-
creases and the elapsed time decreases as Nbatch data in-
creases, i.e., when batch processing is performed with more
data elements accumulated. The reason why the optimal
Ndc increases is that the algorithm can construct a data
cluster with more data elements located in proximity since
the density of points representing data elements in the multi-
dimensional space becomes higher as Nbatch data increases.
The reason why the elapsed time decreases is that the al-
gorithm gets more benefit of batch processing since more
data elements can be processed with a single probe into the
query index as Ndc increases. Thus, for batch processing, it
is more profitable to process continuous queries with more
data elements accumulated.

7.3 Simple Selection Continuous Queries

Effects of Nquery and Nattr

Figure 15 shows the elapsed time for simple selection con-
tinuous queries as Nquery is varied. For SJ-Batch, we set
Nbatch data = 10,000 representatively and use Ndc = 200
when Nattr = 4 and Ndc = 400 when Nattr = 8. The results
indicate that SJ-Batch performs the best, SJ-Immediate the
next, and IBS the worst. The reason why SJ-Immediate
outperforms IBS is mainly due to different ways of using
indexes. IBS searches multiple IBS trees, one for each at-
tribute in the query condition, and merges the results. In
contrast, SJ-Immediate accesses only one multi-dimensional
query index and does not need to merge the results. The
reason why SJ-Batch shows the best performance is that
it reduces the number of accesses to the query index by
virtue of the data cluster. Moreover, SJ-Batch minimizes
the number of I/O’s for searching the query index by using
the overlapping property of the SJWs.

In Figure 15(a), SJ-Immediate outperforms IBS by 1.7 times
when Nquery=10,000 and by 3.2 times when Nquery=100,000.
Similarly, SJ-Batch outperforms IBS by 15.0 and 28.5 times,
respectively. In Figure 15(b), SJ-Immediate outperforms
IBS by 1.4 times when Nquery=10,000 and by 2.1 times
when Nquery=100,000. Similarly, SJ-Batch outperforms IBS
by 15.9 and 36.2 times, respectively. These results indicate
that the performance advantage of our algorithms over IBS

improves as the number of registered queries, Nquery , in-
creases. We also observe that the number of attributes does
not significantly affect the performance advantage of our al-
gorithms.
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Figure 15: Elapsed time for selection query process-
ing as Nquery is varied (Nbatch data = 10,000).

Effects of Rpred

Figure 16 shows the elapsed time for simple selection contin-
uous queries as Rpred is varied. These results indicate that
the elapsed time for IBS increases as Rpred does because the
depth of the IBS tree is proportional to log Rpred [10]. In
contrast, the performances of SJ-Batch and SJ-Immediate
improve as Rpred increases. The reason is that the depth of
our query index (i.e., the MLGF) is not affected by Rpred

but only by Nquery since a query is stored as one region
in the MLGF regardless of the number of predicates speci-
fied in a query. Moreover, in SJ-Batch and SJ-Immediate,
the efficiency of searching the query index is enhanced as
the number of predicates increases because the size of the
region representing a query becomes smaller.
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Figure 16: Elapsed time for selection query process-
ing as Rpred is varied (Nattr=8, Nquery=50000).

Effects of Distribution of Data Elements

In all the experiments stated above, we assume uniform dis-
tribution of input data elements. Now, we show some results
for skewed distribution where the values of most input data
elements are confined to a specific narrow range. An ex-
ample of skewed distribution is a data stream from a room
temperature sensor: typically, room temperature does not
change rapidly. We define the skewness Rskew of input data
elements as the ratio of the number of data elements that
fall into a specific range to that of total data elements. For
simplicity, we consider a specific range whose size is 10% of
the size of the entire domain. Figure 17 shows the perfor-
mance variation as skewness is varied. The elapsed times for
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SJ-Immediate and IBS are shown to be insensitive to data
distribution. In contrast, the elapsed time for SJ-Batch de-
crease as skewness increases, showing improvement by up
to 1.7 times compared with that for uniform distribution.
The reason for the improvement is that a data cluster can
be constructed with a larger number of data elements since
the density of data elements in the specific range becomes
higher. We find out that, by experiments, the optimal Ndc

indeed increases from 200 to 400 as skewness does from 20%
to 100%. Therefore, the advantages of SJ-Batch get more
marked for skewed distributions.
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Figure 17: Comparison of elapsed time as
Rskew is varied (Nattr=4, Nbatch query=100,000,
Nbatch data=10,000).

7.4 Sliding Window Join Continuous Queries
Effects of Nquery and Sizesw

Figure 18 shows the elapsed time for sliding window join con-
tinuous queries against two data stream sources as Nquery

is varied. In SJ-Join, we divide a region representing a join
condition into four regions using the object decomposition
method as explained in Section 6.2. These results indicate
that SJ-Join outperforms IBS-JS by a large margin for a
reason similar to that of Figure 15 showing that SJ-Batch
outperforms IBS. Furthermore, this margin becomes larger
as Sizesw increases. The reason is that the elapsed time for
IBS-JS increases proportionally to Sizesw, while SJ-Join re-
duces the frequency of accessing the query index by virtue
of a larger data cluster(Sizesw corresponds to Nbatch data in
Table 3). In Figure 18, SJ-Join outperforms IBS-JS by up
to 2.6 times when Sizesw = 100, 3.9 times when Sizesw =
1000, and 6.9 times when Sizesw = 10000.

In summary, the experimental results show that our algo-
rithm outperforms earlier optimization methods for both
kinds of continuous queries: simple selection and sliding
window join. Furthermore, our algorithm has a desirable
property that the performance advantage becomes larger as
(1) Nquery , (2) Sizesw , (3) Rpred, or (4) Rskew increase.

8. CONCLUSIONS
In this paper, we have developed a framework for efficiently
processing continuous queries based on spatial join. The
contributions of this paper are summarized as follows.

First, we have presented a new viewpoint of transforming the
continuous query processing problem to a multi-dimensional
spatial join problem. The main advantage of this transfor-
mation is to integrate the two dual methods: data-initiative
and query-initiative. Hence, we have shown that spatial join
is a powerful tool for processing continuous queries. The
transformation takes advantage of the well-known property

of duality between data and queries. We have formalized
the duality property as the duality model.

Second, we have proposed a continuous query processing al-
gorithm based on spatial join, named Spatial Join CQ. The
algorithm processes continuous queries by performing spa-
tial join, which is a symmetric operation, between a set of
data elements and a set of queries. By virtue of this sym-
metric processing, the algorithm achieves the advantages of
both of the two dual methods, rendering continuous query
processing more effective.

Third, we have verified excellence of the proposed algorithm
by extensive experiments. The results show that our algo-
rithm for simple selection continuous queries outperforms
earlier methods by up to 36.2 times in batch processing and
by up to 3.2 times in immediate processing. Our algorithm
for sliding window join continuous queries outperforms ear-
lier methods by up to 6.9 times. Moreover, our algorithm
has a desirable property that the performance advantage be-
comes more marked as the number of registered continuous
queries, the size of sliding windows, the ratio of attributes
having predicates, or the skewness of input data elements
increase.

Overall, these results indicate that our approach provides a
new insight into continuous query processing that can sig-
nificantly improve the performance. As further studies, we
need to improve our algorithm to efficiently process multi-
way sliding window join continuous queries and to develop
a method of automatically selecting the optimal size of the
data cluster.
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