
Odysseus: a High-Performance ORDBMS Tightly-Coupled with IR Features

Kyu-Young Whang, Min-Jae Lee, Jae-Gil Lee, Min-Soo Kim, and Wook-Shin Han
Department of Computer Science and Advanced Information Technology Research Center (AITrc)

Korea Advanced Institute of Science and Technology (KAIST), Daejeon, Korea
{kywhang, mjlee, jglee, mskim, wshan}@mozart.kaist.ac.kr

Abstract
We propose the notion of tight-coupling [8] to add new

data types into the DBMS engine. In this paper, we intro-
duce the Odysseus ORDBMS and present its tightly-coupled
IR features (U.S. patented). We demonstrate a web search
engine capable of managing 20 million web pages in a non-
parallel configuration using Odysseus.

1 Introduction
Conventional ORDBMS vendors provide extension

mechanisms for adding new data types and operations to
their own DBMSs. Examples are the Cartridge [7] for Or-
acle and the Extender [6] for IBM DB2. In these mech-
anisms, new data types are added by using user-defined
types, and their operations by using user-defined functions.
Here, user-defined types and functions are implemented
through the high-level interface provided by the DBMS. We
call this mechanism loose-coupling.

In the loose-coupling architecture, the high-level inter-
face employed causes the following problems. First, com-
munication overhead is incurred because operations on new
data types are performed outside the core DBMS engine.
Second, not all data types and operations can be imple-
mented because the high-level interface provided is not
100% general. Third, concurrency control and recovery in
fine granularity are hard to perform because low-level func-
tions of the DBMS engine cannot be fully utilized for new
data types due to the high-level interface.

In this paper, we propose the tight-coupling architecture
[8] to solve these problems. In the tight-coupling architec-
ture, a new data type and its operations are implemented di-
rectly into the core of the DBMS engine. This architecture
has the following advantages over the loose-coupling archi-
tecture: communication overhead is minimal; no limitation
on data types and operations exists; concurrency control and
recovery can be done in fine granularity.

The tight-coupling architecture has been used to incor-
porate information retrieval (IR) features into the Odysseus
ORDBMS1 [9] that has been under development at
KAIST/AITrc for 14 years. We first introduce Odysseus
and the tightly-coupled IR features. We then demonstrate
excellence of the tightly-coupled IR features through a web
search engine implemented using Odysseus. Our demon-
stration system (a non-parallel configuration) stores and
manages approximately 20 million web pages.2

1It consists of approximately 450,000 lines of C and C++ codes.
2With a parallel configuration, we can increase it to 2 billion web pages

with data partitioning in 100 Linux machines. A prototype using five ma-
chines has been implemented and successfully tested.

For more details about Odysseus, refer to the full ver-
sion of this paper available at http://cs.kaist.ac.kr/research/
technical/Archive/CS-TR-2004-204.pdf.

2 Overview of Odysseus
Odysseus is an object-relational database management

system (ORDBMS) designed to support new applications
such as large-scale multimedia, information retrieval, GIS,
OLAP, and data mining. Odysseus has the following fea-
tures:
• support for large-scale databases
• fast bulk loading and bulk deleting
• concurrency control and crash recovery (fine or coarse

granularity)
• tight coupling of IR features

• an SQL-based query language extended for tight
coupling with IR features

• fast immediate update capability
• fine or coarse granularity concurrency control

and crash recovery on IR contents

3 Tightly-Coupled IR Features
Odysseus stores text documents such as web pages and

find those that contain given keywords in support of IR.
Here, text documents are stored in the form of the text
type, and text IR indexes are used for finding those docu-
ments. Users can specify the database schema using these
text types and text IR indexes at the same level of specifying
nontext types and their indexes. Figure 1 shows the physi-
cal structure of a data record for a schema defined involving
the text type, a text IR index, the integer type, and a B+-tree
index. As shown in the figure, the text type is specified just
in the same way as the integer type is specified. Likewise,
a text IR index is specified in the same way as is a B+-tree
index.

���Text Integerdata record

Text IR Index B+-Tree

Figure 1. The structure of a data record involving
the text type and a text IR index.

3.1 Fast Immediate Update Involving Text IR In-
dexes

Fast immediate update is the most important among
the tightly-coupled IR features of Odysseus. Immediate
updates are processed rapidly in Odysseus by exploiting
the inverted index structure using large objects [2] and

Proceedings of the 21st International Conference on Data Engineering (ICDE 2005) 

1084-4627/05 $20.00 © 2005 IEEE



subindexes. We will elaborate on this structure (patented
[8]) below.

Figure 2 shows the structure of the text IR index that
Odysseus uses. The text IR index is similar to the tradi-
tional inverted index structure [3], but differs in using 1)
large objects to store posting lists and 2) subindexes to in-
dex postings in each posting list. We store a posting list as
a large object and manage the storage space of the posting
list by using the large object tree proposed by Biliris for Ex-
odus [2]. The advantage of this method is that it is easy to
insert a new posting into or remove it from a posting list.
A subindex is a B+-tree created on each large object that
stores a posting list. The subindex is used for locating a
specific posting with a given document identifier within a
posting list. Using subindexes, we can quickly find the lo-
cation of a new posting to be inserted or an existing posting
to be deleted or modified.

����������	


����������	


����������	


����������	


���
���

�������

�������

�����
�������


������������������	������������	
�

�����������	� 
���
 ��������
������ ������ �� ��

�����
���

�����
�������


Figure 2. The text IR index structure using large
objects and subindexes.

3.2 Fast Query Processing

Odysseus can efficiently evaluate 1) multiple-keyword
queries and 2) queries involving both keyword and attribute
conditions as well as single keyword queries. We propose
the IR index join and attribute embedding techniques for
this purpose [9].

IR index join is a query processing technique used to
speed up multiple-keyword queries. When a multiple-
keyword query (having m keywords) is processed, cor-
responding posting lists are m-way merge-joined. Using
subindexes, the exact parts of posting lists that need to be
merged can be identified. Since needless parts of the post-
ing lists are skipped, performance is enhanced. We call
this optimization technique posting skipping. Recent works
by Guo et al. [4] and by Halverson et al. [5] use similar
techniques to speed up the processing of multiple keyword
queries in XML databases.

Attribute embedding is a query processing technique
used to speed up queries involving both keyword and at-
tribute conditions. It evaluates keyword and attribute con-
ditions together by reading a single posting list, in which
the values of the attributes of documents are embedded.
This technique obviates the need for accessing data records
stored in the main database since attribute values can be
obtained by accessing only text IR indexes. Accessing the
data records is very expensive since it incurs random disk
accesses over a large amount of storage space. Thus, at-
tribute embedding significantly enhances the performance.

The user can specify the attributes to be embedded in a
posting list when s/he defines the database schema, and the
query processor can automatically find the values of the em-
bedded attributes when executing a query.

4 Demonstration
We demonstrate a web search engine (ODYS) imple-

mented using Odysseus to show excellence of tightly-
coupled IR features. ODYS stores approximately 20 mil-
lion web pages in a SUN T3+ disk array with 450 GB and
runs on a SUN Enterprize 3500 server with 400 MHz CPU.
We provide a web interface for querying Odysseus.

The user can limit the scope of the query to a single
site. We call this feature site-limited search. Odysseus of-
fers two methods for processing site-limited search. The
first method handles site-limited search as a query involving
both keyword and attribute conditions by embedding site
identifiers into the corresponding posting list. That is, we
use the attribute embedding technique. The second method
handles site-limited search as a multiple-keyword query by
declaring the site identifier attribute as type text and cre-
ating a text IR index on it. That is, we use the IR index
join technique. Since the size of the posting list of a site
identifier is typically small compared to that of a keyword,
many skips occur, due to posting skipping, while doing the
m-way merge-join among the posting lists. Thus, the per-
formance of the second method is enhanced significantly.
The choice between the two methods can be made by the
system designer or can be automatically made by the opti-
mizer. In this demonstration, we use the second method to
process site-limited search.

References

[1] Banerjee, S., Krishnamurthy, V., and Murthy, R., All Your
Data: The Oracle Extensibility Architecture, Oracle White
Paper, Oracle Corp., Oracle Parkway, California, 1999.

[2] Biliris, A., “The Performance Three Database Storage Struc-
tures for Managing Large Objects,” In Proc. Int’l Conf. on
Management of Data, ACM SIGMOD, pp. 276–285, 1992.

[3] Faloutsos, C., “Access Methods for Text,” ACM Computing
Surveys, Vol. 17, No. 1, pp. 49–74, Mar. 1985.

[4] Guo, L., Shao, F., Botev, C., and Shanmugasundaram,
J., “XRANK: Ranked Keyword Search over XML Docu-
ments,” In Proc. Int’l Conf. on Management of Data, ACM
SIGMOD, pp. 16–27, 2003.

[5] Halverson, A., Burger, J., Galanis, L., Kini, A., Krish-
namurthy, R., Rao, A. N., Tian, F., Viglas S., Wang, Y.,
Naughton, J. F., and DeWitt, D. J., “Mixed Mode XML
Query Processing,” In Proc. the 29th Int’l Conf. on Very
Large Data Bases, pp. 225–236, 2003.

[6] IBM, DB2 UDB Text Extender Administration and Pro-
gramming, 2003.

[7] Oracle, Oracle9i Data Cartridge Developer’s Guide, 2002.
[8] Whang, K., Park, B., Han, W., and Lee, Y., “An Inverted In-

dex Storage Structure Using Subindexes and Large Objects
for Tight Coupling of Information Retrieval with Database
Management Systems,” U.S. Patent No. 6,349,308, Feb. 19,
2002, Appl. No. 09/250,487, Feb. 15, 1999.

[9] Whang, K., “Tight-Coupling: A Way of Building
High-Performance Application Specific Engines,” Pre-
sented at the panel session of Int’l Conf. on Database
Systems for Advanced Applications (DASFAA), Japan,
Mar. 2003, available on-line from http://db-www.aist-
nara.ac.jp/dasfaa2003/file/Prof Kyu-Young Whang 5.pdf.

Proceedings of the 21st International Conference on Data Engineering (ICDE 2005) 

1084-4627/05 $20.00 © 2005 IEEE


